
Mac OS X
Networking Overview

Session 803

Mac OS X
Networking Overview

Vincent Lubet
Manager, Core OS Networking Team

Agenda
•Networking architecture
•What’s new
•What are the APIs
•Hints and tips
•What’s next

Networking in Mac OS X

Core Services

DarwinDarwin

Java

Core OSCore OS

BSD
Kernel
BSD
Kernel

Mach KernelMach Kernel
DriversDrivers

I/O KitI/O Kit

File
System
File

System

NetworkingNetworking

ATalkATalk IPIP

CocoaCarbon

Application Services
Application

Environments
Application

Environments

JavaJava CocoaCocoaCarbonCarbon

Ongoing Goals

Networking in Mac OS X

•Ease of use
•Performance
•Better extensibility
•Standards compliance

Architecture

Networking in Mac OS X

•Extensible
•TCP/IP and AppleTalk protocol stacks
•Ethernet and PPP drivers
•IP Firewall and NAT
•Dynamic configuration
•ZeroConf

Based on FreeBSD

Core Networking

•Robust and proven implementation
•Popular API (Sockets)
•Easy-to-port Unix-like applications

• Lots of open-source code available
•New in Jaguar

• FreeBSD 4.4 network stack in Jaguar
• Up-to-date IPFirewall and natd
• IPv6 and IPSec based on KAME
• PPTP

Apple added value to FreeBSD

Networking in Mac OS X

•Multi-threaded and MP efficient
•Tuned network buffer allocation
•Extensible—no need to recompile the kernel

• Kernel development comes with
lots of responsibility

• More about NKE in Session 809

IPv6
•Available in Jaguar
•Addresses Internet growth concerns
•Automatic configuration
•APIs to be address family agnostic
•See Session 809 for more info

IPSec
•IETF standard to secure Internet traffic
•Jaguar has APIs and protocol implementation
•Foundation for VPN solutions
•For IPv4 and IPv6
•See Session 809 for more info

PPP
•Based on pppd
•Apple enhancements

• PPPoE
• CCL scripts
• OT/PPP control API
• Integrated in SystemConfig

•New on Jaguar PPTP client
• Windows VPN connectivity

Also New in Jaguar
•A lot of bug fixes
•Performance improvements
•Detaching network interfaces
•New and updated man pages
•PF_NDRV works (userland protocol stacks)
•SNMP (net-snmp)

Network Configuration
•Preferences specify network “services”

• Ethernet
• AirPort
• PPP

•More than one “service” can be active at a time
•Configuration dynamically updated
•Managed using System Configuration framework

System Configuration
Framework

•APIs providing access to requested configuration
•APIs providing access to current state of the network
•APIs to check network accessiblity

• “Am I connected”
• Replacement for TCPWillDial

•APIs to be notified when something changes
•Available in 10.1 and later
•MoreSCF DTS sample code

Rendezvous
•New in Jaguar
•Local networking that “always” work
•Easy to use like AppleTalk but…
•…using industry-standard TCP/IP
•Make existing network products better
•Make possible entirely new products
•See Session 811 for more info

Do not poll

Coding for Network Applications

•Polling uses 100% of CPU
•Hurts other processes and uses more power
•Instead block or be event driven
•Multiplex endpoints

Buffer sizes

Coding for Network Applications

•Size of buffers is critical for networking performance
• Too small == high context switch overhead
• Too large == starves VM for buffers

•Things to tune
• Socket buffer size
• Size of buffer with end/receive calls

•Receive socket buffer size directly affects
TCP window size

Dynamic configuration

Coding for Network Applications

•Computer does not have a single IP address
•IP addresses change over time
•Servers should bind to the “Any IP” address
•Clients bind to nil
•More than one address is the norm: IPv4 and IPv6
•Do not assume IPv4 (SIOCGIFCONF)

• Use getifaddrs() instead

Privileged operation

Coding for Network Applications

•Bind to low number port
• Less than 1024

•Open raw socket
•Open bpf device
•Open PF_NDRV socket
•Open PF_KEY socket
•See DTS sample code AuthSample

Sockets API
•Native API to get the most out of the OS
•Lots of publicly available code
•Unix Network Programming by Stevens
•Carbon applications can eliminate sockets
emulation layer over OT

•Mac OS X has a rich set of higher level
networking APIs above Sockets

Networking APIs Above the OS

Becky Willrich
Application Frameworks

Networking APIs Above the OS
•What APIs are available
•Each API in depth

• What it does
• Strengths
• Limitations
• When should you use it
• What’s new

Networking APIs Above the OS
•URL Access (Carbon)
•Internet Config (Carbon)
•NSURL and NSURLHandle (Cocoa)
•NSNetService and NSNetServiceBrowser (Cocoa)
•CFNetwork (Core Services)
•WebServicesCore (Core Services)
•CFURL, CFSocket, CFStream (Core Services)
•Open Transport (Core Services)

How Does It Fit In?

Core ServicesCore Services

CarbonCarbon CocoaCocoa

DarwinDarwin

How Does It Fit In?

Core
Services
Core
Services

DarwinDarwin

CarbonCarbon CocoaCocoa

BSD SocketsBSD Sockets

CFStream
CFSocket
CFURL

CFStream
CFSocket
CFURL

OTOT

URLAccessURLAccess
NSURL and

NSURL Handle
NSURL and

NSURL HandleInternet ConfigInternet Config

NSNetServicesNSNetServices

CFNetworkCFNetwork

Web ServicesWeb Services

URL Access
•Provides APIs for up- and downloading URLs
•Focused on “just get the URL”

• Automatically picks up system settings
• Few scheme-specific options

•Supports http, https, ftp, file
•Part of Carbon; compatible back to Mac OS 8.6

URL Access—Strengths
•Simple, high-level API
•Options for extra processing on download

• Populate a file/directory
•Options for adding UI elements
(progress panel, authentication)

•Source-compatibility to Mac OS 9

URL Access—Limitations
•No way to add support for missing schemes
•API is showing its age
•Unimplemented features
• Progress bar via URLUpload()/URLDownload()
• Automatic decompression

•Some issues around pthreads and cooperative
threads co-existing

URL Access—When to Use It
•If you need a strategy for both Mac OS 9
and Mac OS X

•If you need a scheme-agnostic, Carbon strategy
•If you don’t want to get involved in the details
of�the download

URL Access—What’s New
•Progress display from URLOpen()
•Unsuccessfully transferred files cleaned
off the�disk

•Redirection enabled
•Better event handling and notification
•Better error handling

Internet Config
•Holds “networking” settings

• Web proxies
• Helper apps for downloading kinds of URLs
• MIME type to type/creator to extension
mappings

• App-specific preferences
• Some user preferences (mail account, …)

• Legacy Carbon API

Internet Config—Strengths
•Well-known, well-understood API
•Only option on Mac OS 9
•Source compatibility with Mac OS 9

Internet Config—Limitations
•Implementation on Mac OS X is inefficient

• Using ICBegin/ICEnd helps

•Some settings are dated or insufficient
•Some settings are completely obsolete

• GetConfigFile and friends

•No longer the repository for many settings
• Calls through to System Configuration or
Launch Services in many cases

•Forces higher-level linkage than warranted

Internet Config—When to Use It
•Use IC only if there is no other choice
•Use System Configuration for proxy settings
•Use Launch Services to open particular files
or URLs

LSOpenFSRef(), LSOpenCFURLRef()

•Launch Services also provides MIME type
to handler�mappings

•Use CFPreferences for app-specific preferences
• This is a performance burden for all IC clients

Internet Config—What’s New
•Nothing…

NSURL and NSURLHandle
•Cocoa “get the URL” API
•Two classes inside Foundation

• NSURL represents a URL (bridged to CFURL)
• NSURLHandle actually performs the
up/download

•Primarily designed as an infrastructure
for handling URLs

•http, https, ftp, file supported

NSURLHandle—Strengths
•Integrated with the run loop

• Asynchronous APIs do not spawn threads
•Extensible via subclassing
•Well integrated into Cocoa APIs

[[NSImage alloc]
initWithContentsOfURL:myURL];

•Good performance under load (used by Mail
from the main thread for HTML mail)

NSURLHandle—Limitations
•Many “extras” are missing

• No UI integration
• No decompression or content handling

•Documentation is incomplete
•Many Cocoa APIs still refuse non-file URLs

NSURLHandle—When to Use It
•You want a simple download abstraction and
URL Access isn’t suitable

• Available to Carbon X apps, too!
•You need to add your own scheme handler

NSURLHandle—What’s New
•FTP support added
•Many bugs shaken out
•Asynchronous domain name lookup
•Integration with System Configuration
planned for Jaguar

NSNetServices
•Allows you to register and discover services
available on the Net

•Two classes
• NSNetService
• NSNetServiceBrowser

•New in Jaguar
•Implemented on CFNetServices in CFNetwork

CFNetwork
•Low-level abstractions for networking concepts

• NOT a URL library
•APIs in the style of CoreFoundation
•Contains

• SSL/TLS socket streams
• A full HTTP engine
• Net Services APIs

•Focus on high performance and small footprint
•Used by NSURLHandle, Sherlock, Software
Update, iPhoto, WebServicesCore…

CFNetwork—Strengths
•Complete control of the HTTP transaction

• Request can be manipulated directly,
in HTTP-native terms

• You control when bytes are read/written
•HTTP/1.1 fully supported

• Pipelined, persistent connections
• Digest authentication

•Full runloop integration
(schedule on multiple threads if you want)

•Best performance available above raw sockets

CFNetwork—Limitations
•Not a simple, convenient API
•No FTP support
•Little documentation

CFNetwork—When to Use It
•You know the transport is HTTP
•You want a simple, SSL-encrypted socket
•You want more control than the higher level
APIs�provide

•You want to avoid linking higher frameworks
•You need features only in CFNetwork

CFNetwork—What’s New
•HTTP/1.1 persistent connections
•Net services and service discovery APIs
•SOCKS proxy support
•Digest authentication
•Asynchronous hostname lookup

WebServicesCore
•Client framework for web services
•New in Jaguar
•CFNetwork based

• Exports CFTypes
• RunLoop friendly

•Supports authentication options
•HTTP/S POST support only

Core Foundation
•Four interesting CFTypes

• CFURL represents a URL string
• CFSocket manages a socket on the run loop
• CFReadStream and CFWriteStream are
one-way byte streams to/from file, socket,
or�memory

•Also some dirt-simple functions for fetching
URLs

Core Foundation—Strengths
•Single abstraction (CFStream) for a variety
of input/outputs

•Strong run loop integration
•Supports a variety of threading models
•CFSocket supports arbitrary socket
configurations

• UDP as well as TCP
• Server as well as client

Core Foundation—Limitations
•API is thin

• Configure sockets via the BSD APIs
• Need higher APIs for more complex
operations

•No way to create new kinds of streams
•Little documentation

Core Foundation—
When to Use It

•You want to manage a socket on the run loop
•You want to abstract away the actual source
or destination of data

•You need to use an API that requires a
CFReadStream or a CFWriteStream

Core Foundation—
What’s New

•CFRead/WriteStreamSetProperty()
•Write callbacks on CFSocket
•More options controlling your CFSocket callback
•Better event dispatching for CFStream
•Asynchronous hostname lookup
•Socket streams errored out on network
configuration change

•SIGPIPE suppressed on socket streams

Open Transport
•Compatibility API for Mac OS 8 and 9
•Intended for easy migration to Mac OS X
•Emulation of Mac OS execution levels costly

• Lots of threads and context switches
•No access to IPv6 and IPSec APIs
•New Mac OS X networking code should
not use�OT

IPv6
•CFSocket is IP-agnostic
• You still must specify which version you want

•CFStream, CFNetwork, NSURLHandle, and URL
Access all work with hostnames or URLs
• We do the IPv6 work for you
• Much of the IPv6 support is done

•CFURL and NSURL support for IPv6 addresses
is�planned
http://[2002::11FF:1234::1]/myPage.html

What’s Next?

Vincent Lubet

The List
Strong End System Model support; Maintainable
APIs for Kernel Extensions; IPv6 Firewall;
Asynchronous name resolution APIs; Easier to
setup 6to4; Easier to setup IKE; Opportunistic
IPSec encryption; PPP v6; DHCP v6; IPv6 fully
supported thorough the system; Zero copy
sockets; Non-privileged ping; PPP dial-in; PPPoA;
Setting of Ethernet media; Change MAC address;
Jumbo frames; EUI-64 MAC address; QoS APIs;
Dummynet; More documentation; …

Roadmap
Room A1

Mon., 2:00pm
Room A1

Mon., 2:00pm

100 The Darwin Road Map

Room A2
Tue., 9:00am
Room A2

Tue., 9:00am

803 Mac OS X Networking Overview

Civic
Tue., 9:00am

Civic
Tue., 9:00am

301 Cocoa: What’s New:
NSURLHandle, NSNetServices

Room J
Tue., 10:30am

Room J
Tue., 10:30am

804 Client Web Services Frameworks

Roadmap
Room C

Tue., 5:00pm
Room C

Tue., 5:00pm

805 Introducing CFNetwork:
Covers CFNetwork in depth

Civic
Wed., 10:30am

Civic
Wed., 10:30am

108 Managing Kernel Extensions:
Best practices apply also to NKE

Room C
Wed., 2:00pm

Room C
Wed., 2:00pm

808 Managing I/O:
CFRunLoop and CFStream:
Also includes CFSocket

Room C
Thurs., 9:00am

Room C
Thurs., 9:00am

809 Advanced Mac OS X Networking:
IPv6, IPSec, NKE, Performance

Roadmap
Room J

Thurs., 2:00pm
Room J

Thurs., 2:00pm

811 Zero Configuration Networking:
Rendezvous: Includes CFNetServices

Room J1
Thurs., 10:30am

Room J1
Thurs., 10:30am

FF005 Feedback Forum: Toolbox
For InternetConfig feedback

Room J1
Fri., 2:00pm

Room J1
Fri., 2:00pm

FF012 Feedback Forum:
Core OS Networking
General Mac OS X Networking feedback

Room A1
Fri., 5:00pm

Room A1
Fri., 5:00pm

FF016 Feedback Forum: Cocoa
For NSURL, NSURLHandle feedback

Who to Contact
Thomas Weyer
Network and Communications Evangelist
weyer@apple.com

Vincent Lubet
Manager, Core OS Networking Team
vlubet@apple.com

http://developer.apple.com/wwdc2002/urls.html

Additional Resources
•Mac OS X
http://developer.apple.com/macosx

•Darwin
http://www.publicsource.apple.com

•Mac Networking Mailing List
http://www.lists.apple.com/mailman/listinfo/macnetworkprog

http://developer.apple.com/wwdc2002/urls.html

Thomas Weyer
Apple Worldwide Developer Relations

weyer@apple.com

Q&A

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

